
• HγD-Crys is shown in grey and the 6 
Tyr/Phe pairs are highlighted in colors.

• 12 single mutant proteins with these 
Tyr/Phe residues substituted with 
alanines were constructed.

• This color scheme is used throughout the 
presentation of data in this poster.
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Contributions of Tyr/Phe Pairs to the Folding and Stability of Human γD-Crystallin
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Human γD-crystallin (HγD-Crys), a member of the βγ-crystallin
superfamily, is one of the major soluble proteins in the human eye
lens. Crystallins are highly stable proteins and remain folded in the
human eye lens for the majority of an individual’s lifetime.
Aggregation of crystallins leads to cataract. The amino acid
sequence determinants of the folding, unfolding, and thermodynamic
stability of HγD-Crys remain to be identified.

HγD-Crys exhibits two crystallin domains, each containing two
Greek key motifs with eight β-strands. 24 aromatic residues are
distributed throughout HγD-Crys, including 6 conserved β-hairpin
Tyr/Phe pairs. Mutant proteins with these Tyr/Phe residues
substituted with Ala all had similar structures as the wildtype (WT)
protein by circular dichroism (CD).

Results of equilibrium experiments showed that N-terminal
domain (N-td) mutant proteins had the N-td destabilized, but the C-
terminal domain (C-td) unaffected, revealing an increased population
of the single-domain-folded intermediate. C-td mutant proteins had
both the N-td and C-td destabilized, showing a more concerted
unfolding/refolding process.

Results of kinetic experiments showed that for unfolding, C-td
mutant proteins unfolded significantly faster than the WT, while N-td
mutant proteins had no observable difference compared to the WT.
For refolding, substitutions of the second Greek key pairs in each
crystallin domain slowed down refolding rate compared to the WT,
while substitutions of all other pairs had no observable effect.

Summary

Background

Structural Assessment

Kinetic Unfolding
Far-UV CD spectra of the mutant proteins were very similar to that of the WT protein, displaying a major 
peak at 218 nm with similar intensities. This indicated that the mutant proteins maintained the folded β-
sheet structures very similar to the WT protein.
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Conclusion

Mutant proteins were constructed by site-directed mutagenesis.
Equilibrium and kinetic unfolding/refolding experiments were
performed using guanidine hydrochloride (GuHCl) at pH 7.0,
37°C. Tryptophan fluorescence was used to probe the folding
states. Equilibrium data were fitted by a two-state or three-state
model to calculate the transition mid-point GuHCl concentrations
and free energy changes for N-td and C-td. Kinetic data were
analyzed qualitatively.

Materials and Methods

Human γD-Crystallin

Crystal structure of HγD-Crys (1HK0), one of the
most abundant proteins in the eye lens. It exhibits
two crystallin domains, each containing eight anti-
parallel β-strands, organized into two Greek key
motifs. Light blue: N-terminal domain (N-td); light
pink: C-terminal domain (C-td); light green: linker.

Equilibrium Unfolding/Refolding

Aromatic Network

• 24 aromatic residues (in sticks), including 14 Tyr, 
6 Phe, and 4 Trp, are distributed throughout 
HγD-Crys.

• 6 β-hairpin Tyr/Phe pairs (in orange or green) are 
identified by their  proximity of partners (distance 
~5 Å).
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Lens:

• Human eye lens consists of highly
organized, elongated fiber cells, which
are differentiated from epithelial cells.

• high concentration of crystallins is
responsible for the transparency and
the refractive index, both essential for
functional lens.

• aggregation of crystallins scatters
lights, and leads to cataract.
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• All 6 β-hairpin Tyr/Phe pairs were clearly important in the 
thermodynamic stability of HγD-Crys.

• The Greek key pairs had larger contributions than the non-Greek-
key pair to the thermodynamic stability of each crystallin domain.

• Specific subsets of these Tyr/Phe pairs contributed to the 
unfolding or refolding kinetics, suggesting a role in defining 
unfolding/refolding pathways of HγD-Crys.
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Topology Diagram

• Light blue: N-td; light pink: C-td.
• Orange: 4 Tyr/Phe pairs conserved for each 

Greek key motifs (Greek key pairs).
• Green: 2 additional Tyr/Phe pairs are at non-

conserved positions (non-Greek-key pairs).
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All the mutant proteins were destabilized compared to the WT protein. Left panels: each of the N-td 
mutant proteins had the N-td transition shifted to lower GuHCl concentration, indicating a destabilized N-
td. The C-td transitions were unaffected. Right panels: C-td mutant proteins had both N-td and C-td 
destabilized. The N-td and C-td transitions were closer and inseparable, showing a more concerted 
folding process. For clarity, only unfolding data are shown here.
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Equilibrium Unfolding/Refolding Transition Midpoints for HγD-Crys WT and Mutant Proteins. The 
different extents of destabilization depended on the positions of the substitutions. The Greek key pairs 
(N-td: Y6/F11, Y45/Y50, C-td: Y92/Y97, Y133/Y138) had larger contributions to the thermodynamic 
stability than the non-Greek-key pairs (N-td: Y16/Y28, C-td: F115/F117). Left: N-td mutant proteins, two 
transition midpoints corresponding to N-td and C-td stabilities are shown. Right: C-td mutant proteins, 
the only one transition is shown.

Kinetic Refolding

Keeping Track of the Six Pairs
_  _ _ _ _ _ _ _ _ _ _ _

N-td                                     C-td
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Upper panels: N-td mutant proteins had no observable difference compared to the WT. Lower panels: C-
td mutant proteins unfolded significantly faster than the WT. In particular, mutant proteins of the Greek 
key pairs (Y92A, Y97A, Y133A, Y138A) unfolded extremely fast. Mutant proteins of the non-Greek-key 
pair (F115A, F117A) unfolded slightly faster than WT. 

Right panels: Mutant proteins of the second Greek key pair in each crystallin domain refolded significant 
slower than WT (N-td: Y45A, Y50A; C-td: Y133A, Y138A), but in different manners. For Y45A, Y50A
proteins, the initial 70% of the fluorescence change occurred at similar rate as the WT, but the later 30% 
occurred at slower rate. The refolding of Y133A, Y138A proteins were slower than the WT from the 
beginning of the reaction. Left and mid panels: all other mutant proteins had no observable difference 
compared to the WT.
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